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ABSTRACT

Knowing the thermal resistance value associated with an asperity, a model for

the thermal contact resistance of a given interface is obtained by considering that each

asperity of surfaces in contact is a flux tube.

Calculation of any of the thermal conductances depends on the contact radius of

each asperity. This radius increases with load, as asperities are compressed. Contact area

is calculated for a plastic load. Values of thermal contact conductance (or resistance) are

compared with experimental results.

KEY WORDS: constriction; real area of contact; surface model; thermal contact

resistance.



1. INTRODUCTION

Characterization of the thermal contact between two solid bodies pressed

together is very important in various industrial applications, such as in aeronautics or

automobile. A temperature gap appears at the interface, which is usually modeled by a

thermal contact resistance (T.C.R.), according to electrical analogy in steady state. This

difference results from the low number of contact points (and thus a low contact area).

The heat flow is then constricted near the asperities actually in contact. The total contact

resistance can be modeled as combination of three thermal resistances: asperity,

constriction and interstitial fluid. During the last twenty years, the T.C.R.'s

determination has been a constant care for researchers, from both a tribological and a

thermal point of view [1].

The thermal model developed in steady state by Degiovanni et al. for a

cylindrical asperity of contact radius b, apparent radius a and height d, has been applied

to surfaces made of  spherical asperities of same radius, where heights follow a gaussian

distribution. In order to apply this thermal model, the evolution of the geometrical

properties of the interface under load should be characterized. The real and apparent

contact areas are determined for each spherical asperity, thanks to a mechanical model

which allows the presence of both elastic or plastic deformations for a modeled loaded

surface. The influence on the thermal contact resistance can be studied from the

coupling between thermal and mechanical models.

2. THEORY

If one considers that both interstitial fluid and asperity are flux tubes, heat

transfer between two solids through a much smaller area of contact is formalized as :



R
T

c =
∆
Φ

(1)

where Rc is the thermal contact resistance, ∆T is the temperature gap at the interface and

Φ is the heat flow across the contact area. For a cylindrical asperity as shown in Fig.1 a),

the T.C.R. may be written as :
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where A r0 0 848 1093≈ −. . * , and r
b
a

* =  is the ratio of the flux tube and cell radius

respectively. The previous thermal cell is equivalent to Fig.1 b). [2]
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 Fig. 1. Thermal cell



Constriction resistance is usually dominant over the asperity one. Thus, under

vacuum when the fluid influence is neglected, the main part of the thermal contact

resistance is only dependent on geometrical variations within the contact areas.

3. BUILDING AN EQUIVALENT SURFACE

3.1. Ways of increasing r*

For a given contact, the apparent area of contact is well defined. Unfortunately,

the highest difficulty comes from determining the real area of contact, ie the amount of

solid surface sollicitated. When load increases, thinking that the real area of contact

increases either comes naturally. Thus the ratio of the contacting surface on the total

surface strictly follows load variations, if consequences of hardening are neglected.

So increasing r* symbolizes a load increase. This may be done, for instance,

through increasing b with a constant, or decreasing a with b constant. The former is

typical for a model made of numerous caps of same radius and height. Reporting this in

eq. 2 leads to R K Pc 1= . The latter is representative of cylindrical asperities of same

radius and various heights, leading to R K Pc = 2 , as in Fig. 2.
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The above results being obtained for two extremal and opposite ways of

increasing contact area, the thermal contact resistance is tied to the nominal pressure P

by : R
K

P
with nc n= < <,

1

2
1, which is concordant with experimental results [3].

According to this, the ideal surface to which apply the thermal model is covered

with caps of same radius R, whose heights distribution follows a statistical function Γ ,

of standard deviation σ and mean height <h>. Γ depends on surface machining, and is

for instance gaussian for a bead-blasted surface.

3.2. Calculating contact areas under pressure

First of all, the classical hypothesis is made of a contact with an infinitely rigid

plane meeting a surface of roughness equal to the sum of the roughnesses of the two real

surfaces.

Both solids in contact are considered elastic, fully plastic in their behaviour. The

rigid plane being at a given height d, each asperity of radius R, whose initial height h is

greater than d, can undergo either purely elastic or purely plastic deformation. If depth is

less than the limit predicted by Hertz for purely elastic deformation of spherical caps,

the hertzian theory is used to calculate both bearing area of the cap and effective load.

On the other hand, if contact pressure is greater than Vickers hardness Hv of the

material, the volume of the cap is supposed a constant, and the asperity still a truncated

cap of same apparent area, and of new radius R2, in order to obtain the real area of

contact for this asperity.
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with Ra being the apparent contact radius, R2

the curvature radius of the cap during

deformation, R the initial radius of the cap,

Vp the volume of the cap before deformation,

and e=h-d is the penetration depth ( cf fig. 3).

h2 is solution of :
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A limit to this model is that the new

curvature radius R2 should not be smaller

than the apparent contact radius Ra. Thus h2

is solution of :
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The evaluated contact radius b is used in the expression of the T.C.R. given in

Eq. 2.. Each asperity being considered isolated of its neighbours, all these micro-
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Fig. 3. Plastic deformation
of  a spherical cap



conductances are summed to calculate the total T.C.R., resistances of the asperities

being in parallel :

C
R r ac

c cticaps caps

= =

















∑ ∑1 1 1

2π
(4)

The loads upon truncated caps are summed either, and divided by the apparent area of

contact in order to obtain the nominal pressure P, for a given penetration depth.

The pressure dependence of thermal contact conductance Cc has been predicted

for aluminium and steel contact pairs, with standard deviation and mean summit radius

taken from [4]. An example of obtained results has been reported in Fig. 4, for a CRES

304-steel pair contact. Results are in good agreement with both experimental results and

the modified Greenwood and Williamson purely elastic model. However, when

sollicitated under pressure, caps near immediately undergo plastic deformation, so

elastic deformations are neglected.
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Fig. 4. Validation of the model for a CRES 304 steel pair



Values predicted by the model slightly differ from experimental data at low

loads, results are still compatible with experimental plots for a similar material. One of

the main problem is to correctly evaluate R and σ, that is, radii of the highest summits

are dominant over the mean radius that can be extracted from statistical processing, in

the role they play.

4. EXPERIMENTAL RESULTS

4.1. Thermal contact resistance measurements

Experimental measurements have been obtained from a guarded hot-plate

experiment, under pressures ranging from 0 to 5000 Pa. Samples, of square area and

equipped with Cr-Al thermocouples, were pressed together, between two Bi2-Te3

fluxmeters. Sensibilities of the fluxmeters were evaluated under each of the pressures,

both before and after a complete load cycle, in order to take into account effects of

strength hardening. The thermal flux was controlled by a sub-cooler beneath the lowest

sample and a plane heater

made of a thin coil within

a copper block. Load was

measured with a dynamo-

meter, and the stack was

then put under vacuum.

The experimental appa-

ratus is shown in Fig. 5. 
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When the thermal equilibrium was reached for a given pressure P, the

temperature jump ∆T at the interface and thermal flux φ were measured, and the T.C.R.

evaluated. Sample pairs of various materials and machining were tested. Surfaces were

also mapped, and data processed in order to get parameters necessary to the model.

4.2. Number of contacting zones

By considering that every contact plot deforms in a plastic way, the number of

contacts can be evaluated from the measured T.C.R. of a sample pair, using the thermal

model. As shown in Fig. 6, the number of contact plots increases linearly at high values

of load.
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This confirms the fact that the appearance of new, elastically deformed

asperities, does not noticeably modify the actual contact area, in comparison with the

influence of plastic deformation. On the other hand, at low loads, results do not evolve

likewise. More, it clearly appears that slopes are very different for copper and

duralumin. As both pairs were first rectified, then the dural-dural contact pair was bead-

lapped with medium beads, and the copper-copper pair bead-lapped with small beads,

the evolution of the evaluated number of contacts can be related to the machining of

surfaces, and especially to the size of the beads used to smooth the samples.

Nevertheless, evolution the predicted number of contacts incites to think that any

statistical study of the profile should be done only on the highest asperities. So, though

results given by the model are concordant with measured T.C.R., characterization of

surface-describing parameters has to be improved yet, to only take into account the

highest, biggest summits during the statistical processing of profile measurements.

5. THREE CONTACT-POINTS MEDIUM

In order to better understand the way the increase of actual contact area modifies

the value of the TCR, we tried to reproduce what occurs at the very beginning of the

contact, for the highest asperities, but to a much more observable scale, and for a known

number of contacts.

A high-quality lead sample of parallelepiped shape (40 mm side), with three caps

of radius and height 4 mm on its upper side, has been moulded and put in contact with a

steel sample under vacuum to get its T.C.R. evolution under pressure.



Mechanical and thermal parameters of lead and steel were measured, and the

apparent contact radius, a, was calculated :

a S≈ 3π  (5)

Using the hypothesis that every cap undergoes almost immediately plastic

deformation, the real contact radius was next evaluated, for each applied load:

b
F

Hv

≈
3π

(6)

Eq. 2 was then used to calculate the theoretical value of the T.C.R. for this contact.

Curves are to be found in Fig. 7.
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The contact radius of a cap was measured at the end of the experiment, for a

nominal pressure of  5 105 Pa, and its value was 0.38 10-3 m after elastic recoverance,

while the radius b of a thermal cell was evaluated to 0.8 10-3 m. This shows that such a

way of fixing the number of contacts is irrelevant, and that there are doubtlessly macro-

constriction phenomena on the three contact surfaces of the caps. In this case,

measurements were made on contact zones, rather than on asperities, which does not

invalidate the model, but clearly shows scale problems between the size of a thermal

cell, and the average size of an asperity.

6. CONCLUSION

The model developped for evaluation of T.C.R. evolution under pressure gives

quite satisfactory results, according to both experiments and other often used models.

Results may be improved by a better evaluation of  surface-describing parameters,

because as contact occurs, a very small number of asperities are sollicitated. Most of

these asperities undergo plastic deformation, but strength hardening was neglected. One

improvement would be to take this into account, if T.C.R. evolution under pressure is to

be predicted for load cycles.
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